Авторы |
Гаманюк Сергей Борисович, кандидат технических наук, старший научный сотрудник, кафедра технологии материалов, Волгоградский государственный технический университет (Россия, г. Волгоград, пр. Ленина, 28), gamanuk@mail.ru
Руцкий Дмитрий Владимирович, кандидат технических наук, доцент, кафедра технологии материалов, Волгоградский государственный технический университет (Россия, г. Волгоград, пр. Ленина, 28), tecmat@vstu.ru
Зюбан Николай Александрович, доктор технических наук, профессор, заведующий кафедрой технологии материалов, Волгоградский государственный технический университет (Россия, г. Волгоград, пр. Ленина, 28), tecmat49@vstu.ru
Кириличев Михаил Владимирович, аспирант, Волгоградский государственный технический университет (Россия, г. Волгоград, пр. Ленина, 28), tecmat@vstu.ru
|
Аннотация |
Актуальность и цели. Образование неметаллических включений неразрывно связано с процессом кристаллизации расплава, и в зависимости от этой связи происходит формирование величины зерна, структуры, и, соответственно, формируется поле упругой и пластической деформации, определяющее свойства и обрабатываемость получаемого изделия. Целью данной работы являлось проведение исследований по изучению влияния изменения геометрических параметров крупного слитка на загрязненность металла неметаллическими включениями по высоте и сечению.
Материалы и методы. Объектами исследования являлись два слитка спокойной стали 38ХН3МФА массой 24,2 т (слиток обычной геометрии) и 22,5 т (слиток с вогнутой донной частью). Идентификация неметаллических включений проводилась металлографическим методом. Оценку загрязненности стали неметаллическими включениями производили под микроскопом МЕТАМ-РВ-23 на нетравленых шлифах с использованием метода Л (ГОСТ 1778–70).
Результаты и выводы. Результаты исследований показали, что общей закономерностью распределения сульфидов и оксисульфидов является наличие определенной взаимосвязи между индексами загрязненности сульфидов и оксисульфидов по высоте слитка. Неметаллические включения представляют собой сложные оксидные включения марганца, кремния, ванадия, хрома, алюминия, а также сульфидные и оксисульфидные включения. Применение «выпуклого» поддона обеспечивает ускорение кристаллизационных процессов в нижней части слитка и способствует равномерному распределению неметаллических включений по высоте и сечению слитка, уменьшению среднего размера включений, снижению индекса загрязненности, что оказывает положительное влияние на технологические свойства стали.
|
Список литературы |
1. Малиночка, Я. Н. Механизм образования ограненных сульфидов марганца / . Н. Малиночка, Л. Н. Багнюк, С. А. Здоровец // Академия наук СССР. Известия. Сер.: Металлы. – 1989. – № 1. – С. 76–84.
2. Detection of Non-metallic Inclusions in Centrifugal Continuous Casting Steel Billets / Q. Wang, L. Zhang, S. Seetharaman, S. Yang, W. Yang, Y. Wang // Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 2016. – Vol. 47, Issue 3. – P. 1594–1612.
3. Гаманюк, С. Б. Исследование крупного кузнечного стального слитка измененной геометрии с целью повышения качества металла поковок : дис. … канд. техн. наук / Гаманюк С. Б. – Волгоград, 2012. – 162 с.
4. Червяков, А. Н. Металлографическое определение включений в стали / А. Н. Червяков, С. А. Киселев. – М. : Металлургиздат, 1962. – 201 с.
5. Виноград, М. И. Включения в стали и ее свойства / М. И. Виноград. – М. : Металлургиздат, 1963. – 252 с.
6. Krewerth, D. Influence of non-metallic inclusions on fatigue life in the very high cycle fatigue regime / D. Krewerth, T. Lippmann, A. Weidner, H. Biermann // International Journal of Fatigue. – 2016. Vol. 84. P.40–52.
7. Zhao, W. L. Mechanism for development of faults originating from compound inclusions in the forging process of 30Cr2Ni4MoV heavy ingots / W. L. Zhao, Q. X. Ma, S. L. Zha // Materials Transactions. – 2014. – Vol. 55, Issue 8. – P. 1324–1331.
8. Development and production of monoblock low-pressure turbine rotor shaft made from 670 ton ingot (Conference Paper) / Т. Yamauchi, H. Kudo, Y. Kishi, S. Ueda, H. Yoshida, K. Kimura, K. Kajikawa, S. Suzuki // Advances in Materials Technology for Fossil Power Plants – Proceedings from the 7th International Conference. – Waikoloa, HI; United States, 2014. – P. 333–343.
9. Шевцова, О. А. Aspects of the formation of sulfide inclusions and their effect on the quality of low-alloy structural steels / О. А. Шевцова, Н. А. Зюбан, Д. В. Руцкий // Metallurgist. – 2011. – Vol. 54, Issue 11–12. – C. 839–844.
10. Особенности образования сульфидных включений и их расположение внутри зерна в зависимости от условий раскисления стали 20 / О. А. Шевцова, Н. А. Зюбан, С. А. Пегишева, Д. В. Руцкий, К. Е. Титов, Н. В. Клячина // Металлург. – 2014. – № 5. – C. 60–63.
11. Лу нев, В. В. О природе и диагностике неметаллических включений в стали / В. В. Лунев, В. П. Пирожкова // Электрометаллургия. – 2011. – № 7. – С. 26–30.
12. Шевцова, О. А. Исследование особенностей формирования типа и вида сульфидных включений в зависимости от степени окисленности металла и их влияние на свойства низколегированных конструкционных сталей / О. А. Шевцова, Н. А. Зюбан, М. Н. Летников, Д. В. Руцкий // Проблемы черной металлургии и материаловедения. – 2010. – № 2. – C. 56–60.
13. Зюбан, Н. А. Влияние вакуумирования на особенности формирования сульфидных включений и свойства изделий из низколегированных конструкционных сталей / Н. А. Зюбан, О. Б. Крючков // Известия вузов. Черная металлургия. – 2008. – № 5. – С. 15–18.
|